Chapter-I : Theoretical background and Literature Survey (1-53)

1.0 Introduction

1.1 Basic definitions of humidity
 1.1.1 Absolute humidity
 1.1.2 Specific humidity
 1.1.3 Relative humidity

1.2 Methods for creating humidity
 1.2.1 Use of saturated salts
 1.2.2 Divided flow method
 1.2.3 Two pressure method
 1.2.4 Two temperature method

1.3 Principles of Humidity Measurements

1.4 Polymers and their Characteristics
 1.4.1 Overview of Structures of Polymers
 1.4.2 The Glass Transition Temperature
 1.4.3 Free Volume Theory of Glass Transition
 1.4.4 Relaxation Process in the region of T_g

1.5 The Plasma State
 1.5.1 Glow Discharge Plasmas (Cold Plasmas)
 1.5.2 DC Glow Discharges
 1.5.3 RF Plasmas

1.6 Polymerization
 1.6.1 Conventional Polymerization
 1.6.1.1 Step Growth Polymerization
 1.6.1.2 Chain-Growth Polymerization
 1.6.2 Plasma Polymerization
 1.6.2.1 Plasma Polymerization Mechanism
1.6.2.2 Physical Plasma Process Parameters

1.7 Plasma Treatment of Polymer Surfaces
 1.7.1 Plasma Modification of Polymers

1.8 Humidity sensing mechanism of PMMA
 1.8.1 Basic Hypothesis of Diffusion - Mathematical Theory
 1.8.2 Diffusion of H₂O in PMMA

1.9 Polymer based Humidity Sensing methods
 1.9.1 Resistive type Humidity Sensors
 1.9.2 Capacitive type Humidity Sensors
 1.9.3 Resonant Humidity Sensor

1.10 Sensor fabrication technologies
 1.10.1 Thick film technology
 1.10.2 Pellet formation technology
 1.10.3 Thin film technology
 1.10.3.1 Dip coating technology
 1.10.3.2 Spin coating technology
 1.10.4 Deposition technologies

1.11 Literature Review

References

Chapter-II: Experimental Techniques (54-67)

2.1 Introduction:

2.2 Sensor Fabrication:
 2.2.1 Mask Preparation:
 2.2.2 Photo Lithography for pattern delineation
 2.2.3 Cleaning of Glass, epoxy and silicon Substrates

2.3. Deposition of the sensing material
 2.3.1 PMMA Deposition by spin coating.
 2.3.2 Plasma Treatments of Conventional PMMA
 2.3.3 Monomer (MMA) Distillation
 2.3.4 Plasma Polymerization of MMA (PPMMA deposition)

2.4 FTIR characterization of PMMA films:
2.5 Relative Humidity (RH) Measurement of the sensors
 2.5.1 Continuous RH Response (Resistance Measurement)
 2.5.2 Static Step RH Response (Capacitance Measurement)
 2.5.3 Response and recovery Time of the Sensor

2.6 Optical response of PMMA

References

Chapter- III: Results and Discussion on humidity sensing characteristics (68-97)

3.1: Spin Coated PMMA as humidity sensor- Results and Discussion
 3.1.1 Introduction
 3.1.2 Sample preparation by spin-coating process
 3.1.3 FTIR Characterization of the spin coated films
 3.1.4 SEM of spin coated film
 3.1.5 Humidity Response of spin coated films
 3.1.6 Response and recovery time of spin coated films
 3.1.7 Hysteresis of spin coated films

3.2 Plasma treated PMMA as humidity sensor- Results and Discussion
 3.2.1 Introduction
 3.2.2 The plasma treatment process
 3.2.3 Characterization of the plasma treated films
 3.2.3.1 FTIR analysis
 3.2.3.2 The SEM of the Plasma Treated Samples
 3.2.4 Humidity Response of the Argon plasma Treated Films
 3.2.5 Hysteresis

3.3 Plasma Polymerized PMMA as humidity sensor- Results and Discussion
 3.3.1 Introduction
 3.3.2 IR Analysis of the Purified Monomer
 3.3.3 Synthesis of Plasma Polymer Films
 3.3.4 Characterization of the plasma polymerized films:
 3.3.4.1 FTIR
 3.3.5 Humidity Response of the plasma polymerized Films:
3.3.6 Response and recovery Time of plasma polymerized films

3.3.7 Hysteresis of plasma polymerized films

3.4 Conclusion

References

4.1 Introduction

4.2 Characterization of Material
 4.2.1 SEM
 4.2.2 FTIR

4.3 Optical response of PMMA

Chapter V Future scope (107)

Publications