CHAPTER VI*

Development of Structural Model for Advertisement Effectiveness
6.1 Introduction

The present chapter explains the implementation of Interpretive Structural Modeling (ISM) technique to realize and develop linkages among recognized measures of advertisement effectiveness for select product categories in context of print media. Following section discusses the need of implementing ISM method while subsequent sections present an overview of ISM technique and detailed methodology adopted for present research study. Finally, obtained results and relevant discussions are provided in the end of the chapter.

6.2 Need for ISM Modeling

Application of content analysis for present research study has helped to identify prominently advertised product categories in Hindi newspapers in Indian context while Delphi assisted in reducing the dimensions which are used to measure advertisement effectiveness with reference to print media. But the research intent of defining and developing interrelationships among these advertisement effectiveness measures for selected products in context of print media is still not achieved. As a result a well recognized modeling approach is required to explain these interrelationships among various dimensions.

An examination of modeling techniques through research literature proposed Interpretive Structural Modeling (ISM) to be one such powerful research method that can be used in such research contexts. A systematic and efficient modeling technique, ISM produces a structural model, establishes the ‘leads to’ relationships and has advanced ability of capturing dynamic complexities. Therefore Interpretive Structural Modeling is applied to understand and develop linkages among identified measures of advertisement effectiveness for select product categories for print media.

6.3 Interpretive Structural Modeling: An Overview

Interpretive Structural Modeling (ISM) is a systematic and efficient modeling technique that produces a structural model, sets up the ‘leads to’ relationships and has advanced ability of capturing dynamic complexities. First proposed by J. Warfield (1973) to analyze the complex situation systems and to measure the interrelationships among sub-criteria easily; ISM also encourages issue analysis by allowing participants to explore the adequacy of a proposed list of subject elements (Attri et al., 2012). Developed in 1970’s for recognizing relations among particular items (Warfield, 1974; Sage, 1977); it facilities in imposing order and direction on the complexities of relationships amid elements of a subject and let a systemic vision of the associations among the variables (Ravi et al., 2005). ISM method is interpretive as decision
of a respondent group makes a decision whether and how variables are interrelated. A technique that establishes logical relationships between system variables (Thakkar et al., 2005); ISM is structural since by and large structural relationships among the dimensions is extracted. It is a modeling technique also because the specific interrelationships and overall structure are demonstrated in an illustrative model (Warfield, 1974). ISM technique not only provides a fundamental understanding of complex situations but also assists in finding out a strategy for answering the problem (Singh and Kant, 2008).

Though it is used as a group learning instrument, ISM can also be used independently to examine various linkages or interrelationships (Mandal and Deshmukh, 1994; Jharkharia and Shankar, 2005). In short, ISM is an interactive group learning method whereby a set of diverse elements which are related directly and indirectly, are ordered into an inclusive systematic model (Barve et al., 2008; Singh et al., 2008). A variety of research scholars have employed ISM technique in varied contexts to recognize interrelationships among various dimensions viz. Sharma et al., 1995; Yan, 2005; Singh, 2005; Illyas, 2007; Thakkar, 2008 and Khurana et al., 2010. Thus implementing ISM method to set linkages among various advertisement effectiveness measures in present study is reasonable and justified.

6.4 Methodology Adopted for ISM Modeling

Interpretive Structural Modeling begins with the recognition of dimensions using any of the group problem resolving method related to research issue in context. Once dimensions are identified, a contextually relevant relationship is chosen (Warfield, 1974; Ravi et al., 2005 and Singh et al., 2008). This leads to the development of a structural self-interaction matrix (SSIM) depending on pair wise assessment of dimensions. In the next stage, SSIM is changed into reachability matrix, its transitivity is verified and then reachability matrix is separated into different levels to build corresponding ISM model (Barve et al., 2008). For the present research study, the various stages involved in ISM methodology were adapted from Barve et al., 2006.

Figure 6.1 illustrates the methodology adopted in order to develop ISM models for recognized advertisement effectiveness dimensions in context of prominently advertised product categories.
6.4.1 Identification of the Variables and Establishment of the Contextual Relationships

The product specific advertisement effectiveness variables which are under consideration for ISM have been identified by implementing Delphi technique in context of print media as discussed in detail in Chapter V. Execution of Delphi resulted in the finalization of 13 dimensions each for Hair Care Products and Automobiles while 14 dimensions are recognized in context of Mobiles in order to develop interrelationships or linkages among variables using
Table 6.1 illustrates the list of finalized variables for each product category which are used as input to establish contextual relationships. Separate codes (A – Automobiles, H – Hair Care Products and M – Mobiles) were given to the dimensions of individual product categories for better understanding and avoiding confusions.

Once the variables set is decided, contextual relationships are established among variables which represents the link indicating whether one variable leads to another. It also provides a base to develop Structural Self-Interaction Matrix (SSIM) as discussed in after that step (Barve et al., 2008).

<table>
<thead>
<tr>
<th>Table 6.1: Finalized Product Specific Variables Used as Input to Establish Contextual Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobiles</td>
</tr>
<tr>
<td>S.No.</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>A4</td>
</tr>
<tr>
<td>A5</td>
</tr>
<tr>
<td>A6</td>
</tr>
<tr>
<td>A7</td>
</tr>
<tr>
<td>A8</td>
</tr>
<tr>
<td>A9</td>
</tr>
<tr>
<td>A10</td>
</tr>
<tr>
<td>A11</td>
</tr>
<tr>
<td>A12</td>
</tr>
<tr>
<td>A13</td>
</tr>
<tr>
<td>M14</td>
</tr>
</tbody>
</table>

6.4.2 Developing Structural Self-Interaction Matrix (SSIM)

Based on the contextual relationship for each of the variable, questioning on the existence of connection between any two dimensions \(i\) and \(j\) and the related direction is done (Thakkar et al., 2005). Four codes are utilized to indicate the direction of association between the dimensions \(i\) and \(j\) (Barve et al., 2006):

‘\(V\)’ = Dimension \(i\) will help to achieve Dimension \(j\);
‘A’ = Dimension j will be achieved by Dimension i;
‘X’ = Dimension i and j will help to achieve each other; and
‘O’ = Dimensions i and j are unrelated.

Depending on the contextual relationships the SSIM is build up for the 13 dimensions acknowledged for Automobiles to achieve advertisement effectiveness in context of print media as depicted in Table 6.2.

Table 6.2: SSIM for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>V</td>
<td>V</td>
<td>O</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>V</td>
<td>A</td>
<td>O</td>
<td>V</td>
<td>O</td>
</tr>
<tr>
<td>A2</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>O</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>V</td>
<td>O</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>O</td>
<td>V</td>
<td>A</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>X</td>
<td>O</td>
<td>V</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>V</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>A</td>
<td>V</td>
<td>A</td>
<td>V</td>
<td>X</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>V</td>
<td>O</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>A</td>
<td>V</td>
<td>O</td>
<td>V</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>A</td>
<td>V</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>A</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td></td>
</tr>
</tbody>
</table>

Similarly, Structural Self-Interaction Matrices (SSIMs) are developed for the dimensions identified through Delphi for Hair Care Products (13) and Mobiles (14) based on the corresponding contextual relationships as compiled in Table 6.3.

Table 6.3: SSIMs for Hair Care Products and Mobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>V</td>
<td>V</td>
<td>O</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>V</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>O</td>
</tr>
<tr>
<td>H2</td>
<td>O</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td>O</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>O</td>
<td>V</td>
<td>A</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4.3 Developing Reachability Matrix from SSIM

The Structural Self-Interaction Matrix (SSIM) is transformed into initial Reachability Matrix by replacing the symbols ‘V’, ‘A’, ‘X’ and ‘O’ by binary digits 1 and 0 as per the following principles (Singh, 2005; Barve et al., 2008):

- If the \((i, j)\) value in the SSIM is ‘V’, it makes the \((i, j)\) value of the reachability matrix 1 while \((j, i)\) value turns into 0.

<table>
<thead>
<tr>
<th>Mobiles</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>14 13 12 11 10 9 8 7 6 5 4 3 2</td>
</tr>
<tr>
<td>M2</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td></td>
</tr>
<tr>
<td>M11</td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td></td>
</tr>
<tr>
<td>M13</td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td></td>
</tr>
</tbody>
</table>

H4 A V V V O A A V O
H5 V O V O O O V V
H6 A V A V X A A
H7 V V V O O V
H8 X O V V V
H9 A V O V
H10 O A A
H11 A V
H12 A
H13
• If the \((i, j)\) value in the SSIM is ‘A’, it makes the \((i, j)\) value of the reachability matrix 0 while \((j, i)\) value turns out to be 1.

• If the \((i, j)\) value in the SSIM is ‘X’, it makes the \((i, j)\) value of the reachability matrix 1 while \((j, i)\) value also becomes 1.

• If the \((i, j)\) value in the SSIM is ‘O’, it makes the \((i, j)\) value of the reachability matrix 0 while \((j, i)\) value to be converted into 0.

Thus, the initial reachability matrix for the 13 dimensions of advertisement effectiveness for Automobiles is developed by following above mentioned rules as shown in Table 6.4.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A13</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dependence | 3 | 5 | 3 | 3 | 1 | 10 | 2 | 6 | 12 | 8 | 7 | 9 | 5 |

Table 6.4: Reachability Matrix for Automobiles

The above table depicts the concluding reachability matrix which is acquired by including the transitivities as specified in adopted ISM methodology. It also shows the driving power and dependence of each of the dimension. The driving power of a specific dimension is the overall number of dimensions (with itself) which it may help out to achieve while the dependence is the entire dimensions which may assist to attain it (Singh and Kant, 2008).

6.4.4 Partitioning the Reachability Matrix into Levels
Once the initial reachability matrix is transformed from SSIM for Automobiles, the reachability set and antecedent set for every dimension are found. The reachability set for a specific dimension consists of the dimension itself and the other dimensions which it may facilitate to attain while the antecedent set consists of the dimension itself and the other dimensions which may aid in achieving it (Barve et al., 2008). Consequently, the intersection of these sets is identified for all the dimensions. The dimension for which the reachability and the intersection sets are identical is allocated as the top-level dimension in the ISM ladder as it would not help out any other dimension over its own level.

Table 6.5: Iteration I of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1,3,6,8,9,10,12,13</td>
<td>1,5,7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>2,6,9,10,11,12</td>
<td>2,4,5,8,13</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3,6,8,9,10,11,13</td>
<td>1,3,5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td>2,4,6,8,9,10,11,12</td>
<td>4,8,13</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>A5</td>
<td>1,2,3,5,7,11,12,13</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>A6</td>
<td>6,9,10,12</td>
<td>1,2,3,4,6,7,8,9,11,13</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>1,6,7,8,9,10,11,13</td>
<td>5,7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>A8</td>
<td>2,4,6,8,10,12</td>
<td>1,3,4,7,8,13</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>A9</td>
<td>6,9,10,12</td>
<td>1,2,3,4,6,7,9,13</td>
<td></td>
<td>6,9</td>
</tr>
<tr>
<td>A10</td>
<td>10</td>
<td>1,2,3,4,6,7,8,9,10,11,12,13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>6,10,11,12</td>
<td>2,3,4,5,7,11,13</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>A12</td>
<td>10,12</td>
<td>1,2,4,5,6,8,9,11,12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>A13</td>
<td>2,4,6,8,9,10,11,13</td>
<td>1,3,5,7,13</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Once the top-level element is known, it is removed from the listing of the remaining dimensions. It is evident from the Table 6.5 that Purchase Intention (Dimension 10) is found at level I in case of Automobiles. Hence, it would be placed at the apex of the ISM hierarchy.

It is Iteration I for level partitions and this will be repeated till the levels of each dimension are located. The recognized levels assist in constructing the digraph and the final model of ISM for the product category in consideration. Subsequent tables (Table 6.6 – Table 6.15) illustrate the level wise partitioning of reachability matrix through different iterations which are carried out for advertisement effectiveness dimensions for Automobiles to develop the ISM hierarchy.
Table 6.6: Iteration II of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1,3,6,8,9,12,13</td>
<td>1,5,7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>2,6,9,11,12</td>
<td>2,4,5,8,13</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3,6,8,9,11,13</td>
<td>1,3,5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td>2,4,6,8,9,11,12</td>
<td>4,8,13</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>A5</td>
<td>1,2,3,5,7,11,12,13</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>A6</td>
<td>6,9,12</td>
<td>1,2,3,4,6,7,8,9,11,13</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>1,6,7,8,9,11,13</td>
<td>5,7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>A8</td>
<td>2,4,6,8,12</td>
<td>1,3,4,7,8,13</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>A9</td>
<td>6,9,12</td>
<td>1,2,3,4,6,7,9,13</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>6,11,12</td>
<td>2,3,4,5,7,11,13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>12</td>
<td>1,2,4,5,6,8,9,11,12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>2,4,6,8,9,11,13</td>
<td>1,3,5,7,13</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Table 6.7: Iteration III of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1,3,6,8,9,13</td>
<td>1,5,7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>2,6,9,11</td>
<td>2,4,5,8,13</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3,6,8,9,11,13</td>
<td>1,3,5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td>2,4,6,8,9,11</td>
<td>4,8,13</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>A5</td>
<td>1,2,3,5,7,11,13</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>A6</td>
<td>6,9</td>
<td>1,2,3,4,6,7,8,9,11,13</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>1,6,7,8,9,11,13</td>
<td>5,7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>A8</td>
<td>2,4,6,8</td>
<td>1,3,4,7,8,13</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>A9</td>
<td>6,9</td>
<td>1,2,3,4,6,7,9,13</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>6,11</td>
<td>2,3,4,5,7,11,13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>2,4,6,8,9,11,13</td>
<td>1,3,5,7,13</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Table 6.8: Iteration IV of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1,3,8,13</td>
<td>1,5,7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>2,11</td>
<td>2,4,5,8,13</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3,8,11,13</td>
<td>1,3,5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>A4</td>
<td>2,4,8,11</td>
<td>4,8,13</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>A5</td>
<td>1,2,3,5,7,11,13</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Table 6.7: Iteration III of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7</td>
<td>1,7,8,11,13</td>
<td>5,7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>A8</td>
<td>2,4,8</td>
<td>1,3,4,7,8,13</td>
<td></td>
<td>4,8</td>
</tr>
<tr>
<td>A11</td>
<td>11</td>
<td>2,3,4,5,7,11,13</td>
<td>11</td>
<td>IV</td>
</tr>
<tr>
<td>A13</td>
<td>2,4,8,11,13</td>
<td>1,3,5,7,13</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Table 6.9: Iteration V of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1,3,8,13</td>
<td>1,5,7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>2,4,5,8,13</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>A3</td>
<td>3,8,13</td>
<td>1,3,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>2,4,8</td>
<td>4,8,13</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>1,2,3,5,7,13</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>1,7,8,13</td>
<td>5,7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>2,4,8</td>
<td>1,3,4,7,8,13</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>2,4,8,13</td>
<td>1,3,5,7,13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.10: Iteration VI of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1,3,8,13</td>
<td>1,5,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>3,8,13</td>
<td>1,3,5</td>
<td>3</td>
<td>VI</td>
</tr>
<tr>
<td>A4</td>
<td>4,8</td>
<td>4,8,13</td>
<td>4,8</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>1,3,5,7,13</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>1,7,8,13</td>
<td>5,7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>4,8</td>
<td>1,3,4,7,8,13</td>
<td>4,8</td>
<td>VI</td>
</tr>
<tr>
<td>A13</td>
<td>4,8,13</td>
<td>1,3,5,7,13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.11: Iteration VII of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1,3,13</td>
<td>1,5,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>3,13</td>
<td>1,3,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>1,3,5,7,13</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.11: Iteration VII of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7</td>
<td>1,7,13</td>
<td>5,7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>A13</td>
<td>13</td>
<td>1,3,5,7,13</td>
<td>13</td>
<td>VII</td>
</tr>
</tbody>
</table>

Table 6.12: Iteration VIII of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1,3</td>
<td>1,5,7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
<td>1,3,5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>A5</td>
<td>1,3,5,7</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>A7</td>
<td>1,7</td>
<td>5,7</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Table 6.13: Iteration IX of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>1,5,7</td>
<td></td>
<td>IX</td>
</tr>
<tr>
<td>A5</td>
<td>1,5,7</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>1,7</td>
<td>5,7</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Table 6.14: Iteration X of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>5,7</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>A7</td>
<td>7</td>
<td>5,7</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 6.15: Iteration XI of Level Partition for Automobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>5</td>
<td>5</td>
<td></td>
<td>XI</td>
</tr>
</tbody>
</table>

6.4.5 Constructing the ISM Model

Partitioning of reachability matrix through a number of iterations has resulted in the identification of level of each of the advertisement effectiveness dimensions in the ISM.
hierarchy. The structural model is to be prepared using these level partitions while discarding the transitivities as explained in the ISM methodology (Shankar, 2005). Following observations are made while dividing the reachability matrix into levels which will assist in the development of ISM model for Automobiles:

- Attention (Dimension A5) has emerged as a significant variable for advertisement effectiveness with strong driving power and low dependence among all 13 effectiveness drivers for Automobiles and thus should form the base of the ISM hierarchy.

- Level partitioning suggests that Attention (A5) leads to Relevance (Dimension A7) which is having strong driving power but weak dependence. Similarly, Relevance (A7) leads to Interest (Dimension A1) and therefore to be placed accordingly in the ISM hierarchy.

- Interest (A1) helps to achieve Informative (Dimension A3) which is having strong driving power which in turn leads to Rationality (Dimension A13) with powerful driving power and little dependence. It is also apparent from the level partitions of reachability matrix that Rationality (A13) leads to Liking (Dimension A4) and Believable (Dimension A8) at the same time through strong driving power and weak dependence while these dimensions help to achieve Persuasion (Dimension A2) which is crucial to realize advertisement effectiveness in context of print media.

- Persuasion (A2) facilitates to attain Memorable (Dimension A11) which is having weak driving power but strong dependence which consecutively guides to Recall (Dimension A9) and Recognition (Dimension A6) both having feeble driving power but strong dependence. Recall (A9) and Recognition (A6) sequentially makes possible to accomplish Response (Dimension A12) which ultimately leads to Purchase Intention (Dimension A10) with feeble driving power and powerful dependence. Hence it should be situated at the acme of the ISM hierarchy.

Based on preceding observations that are made through level partitions of initial reachability matrix, an ISM model is developed for Automobiles as represented in Figure 6.2.
Similarly, initial reachability matrix for 13 advertisement effectiveness dimensions which are recognized through Delphi is developed from SSIM (Table 6.3) for Hair Care Products followed by level partitioning of reachability matrix to find out the level of each dimension which will assist in the development of ISM model (Singh et al., 2008). Table 6.16 shows the
collective result of partitioning of reachability matrix for Hair Care Products into various levels.

Table 6.16: Combined Result of Level Partitions for Hair Care Products

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>1,3,4,6,8,9,10,12,13</td>
<td>1,5,7</td>
<td>1</td>
<td>IX</td>
</tr>
<tr>
<td>H2</td>
<td>2,9,10,11,12</td>
<td>2,3,4,5,7,8</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>H3</td>
<td>2,3,4,6,8,9,10,11,12,13</td>
<td>1,3,5</td>
<td>3</td>
<td>VIII</td>
</tr>
<tr>
<td>H4</td>
<td>2,4,6,10,11,12</td>
<td>1,3,4,7,8,13</td>
<td>4</td>
<td>VI</td>
</tr>
<tr>
<td>H5</td>
<td>1,2,3,5,6,7,11,13</td>
<td>5</td>
<td>5</td>
<td>XI</td>
</tr>
<tr>
<td>H6</td>
<td>6,9,10,12</td>
<td>1,3,4,5,6,7,8,9,11,13</td>
<td>6,9</td>
<td>III</td>
</tr>
<tr>
<td>H7</td>
<td>1,2,4,6,7,8,11,12,13</td>
<td>5,7</td>
<td>7</td>
<td>X</td>
</tr>
<tr>
<td>H8</td>
<td>2,4,6,8,9,10,11,13</td>
<td>1,3,7,8,13</td>
<td>8,13</td>
<td>VII</td>
</tr>
<tr>
<td>H9</td>
<td>6,9,10,12</td>
<td>1,2,3,6,8,9,13</td>
<td>6,9</td>
<td>III</td>
</tr>
<tr>
<td>H10</td>
<td>10</td>
<td>1,2,3,4,6,8,9,10,11,12</td>
<td>10</td>
<td>I</td>
</tr>
<tr>
<td>H11</td>
<td>6,10,11,12</td>
<td>2,3,4,5,7,8,11,13</td>
<td>11</td>
<td>IV</td>
</tr>
<tr>
<td>H12</td>
<td>10,12</td>
<td>1,2,3,4,6,7,9,11,12,13</td>
<td>12</td>
<td>II</td>
</tr>
<tr>
<td>H13</td>
<td>4,6,8,9,11,12,13</td>
<td>1,3,5,7,8,13</td>
<td>8,13</td>
<td>VII</td>
</tr>
</tbody>
</table>

Table 6.16 illustrates the level of each of the advertisement effectiveness dimensions in the ISM hierarchy for Hair Care Products which led to the building up of ISM model for the product category in context as depicted in Figure 6.3. It is clear from the developed model that Attention (Dimension H5) is an essential variable with strong driving power and low dependence and thus shapes the foundation of the ISM hierarchy. It leads to Relevance (Dimension H7) which in turn leads to Interest (Dimension H1) which helps to achieve Informative (Dimension H3) with strong driving power.

Informative (H3) facilitates to attain Comprehension (Dimension H8) and Rationality (Dimension H13) at the same time through strong driving power and weak dependence while these dimensions help to achieve Believable (Dimension H4) which in turn leads to Liking (Dimension H2).
Liking (H2) sequentially makes possible to achieve Persuasion (Dimension H11) which consecutively guides to Recall (Dimension H6) and Recognition (Dimension H9) both having feeble driving power but strong dependence. Recall (H6) and Recognition (H9) make possible to realize Response (Dimension H12) which finally leads to Purchase Intention (Dimension H10) with frail driving power and powerful dependence and therefore appears at the peak of the ISM hierarchy for Hair Care Products.
In the same way, initial reachability matrix for advertisement effectiveness dimensions for Mobiles is developed from its corresponding SSIM (Table 6.3) which guided the level partitioning to find out the level of each dimension that will finally result in the development of ISM model. Table 6.17 shows the combined result of reachability matrix partitioning for product category III i.e. Mobiles into various levels.

Table 6.17: Combined Result of Level Partitions for Mobiles

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Reachability Set</th>
<th>Antecedent Set</th>
<th>Intersection Set</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>1,2,3,4,8,10,11,13</td>
<td>1,5,7,14</td>
<td></td>
<td>IX</td>
</tr>
<tr>
<td>M2</td>
<td>2,6,9,11,12</td>
<td>1,2,4,7,8,13</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>M3</td>
<td>3,4,6,8,9,10,12,13</td>
<td>1,3,5,7,13,14</td>
<td>3,13</td>
<td>VIII</td>
</tr>
<tr>
<td>M4</td>
<td>2,4,8,9,11,12</td>
<td>1,3,4,5,7,13</td>
<td></td>
<td>VII</td>
</tr>
<tr>
<td>M5</td>
<td>1,3,4,5,6,7,8,10,13</td>
<td>5,14</td>
<td></td>
<td>XI</td>
</tr>
<tr>
<td>M6</td>
<td>6,9,10,12</td>
<td>2,3,5,6,7,8,9,11,13,14</td>
<td>6,9</td>
<td>III</td>
</tr>
<tr>
<td>M7</td>
<td>1,2,3,4,6,7,8,9,11,13</td>
<td>5,7,14</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>M8</td>
<td>2,6,8,10,11,12</td>
<td>1,3,4,5,7,8,13</td>
<td></td>
<td>VI</td>
</tr>
<tr>
<td>M9</td>
<td>6,9,10,12</td>
<td>2,3,4,6,7,9,13,14</td>
<td>6,9</td>
<td>III</td>
</tr>
<tr>
<td>M10</td>
<td>10</td>
<td>1,3,5,6,8,9,10,11,12,14</td>
<td>10</td>
<td>I</td>
</tr>
<tr>
<td>M11</td>
<td>6,10,11,12</td>
<td>1,2,4,7,8,11,13,14</td>
<td>11</td>
<td>IV</td>
</tr>
<tr>
<td>M12</td>
<td>10,12</td>
<td>2,3,4,6,8,9,11,12,13</td>
<td>12</td>
<td>II</td>
</tr>
<tr>
<td>M13</td>
<td>2,3,4,6,8,9,11,12,13</td>
<td>1,3,5,7,13,14</td>
<td>3,13</td>
<td>VIII</td>
</tr>
<tr>
<td>M14</td>
<td>1,3,5,6,7,9,10,11,13,14</td>
<td>14</td>
<td></td>
<td>XII</td>
</tr>
</tbody>
</table>

Table 6.17 demonstrates the level of each of the advertisement effectiveness dimensions in the ISM hierarchy for Mobiles which led to the development of ISM model for the product category in context as described in Figure 6.4.
Figure 6.4: Development of ISM Model for Advertisement Effectiveness of Mobiles

As it is evident from the ISM model that Attention (Dimension M14) is a critical variable in case of Mobiles also with strong driving power and low dependence and thus forms the foundation of the ISM hierarchy. It leads to Relevance (Dimension M5) which in turn leads to Interest (Dimension M7) which helps to achieve Informative (Dimension M1) with strong driving power and low dependence. Informative (M1) facilitates to attain Believable (Dimension M3) and Excitability (Dimension M13) at the same time through strong driving power and weak dependence while these dimensions help to achieve Liking (Dimension M4) which in turn leads to Consumer Preference (Dimension M8).
Consumer Preference (M8) sequentially makes possible to reach Persuasion (Dimension m2) which guides to Memorable (Dimension M11) which in turn leads to Recall (Dimension M6) and Recognition (Dimension M9) simultaneously with feeble driving power but strong dependence. These dimensions make possible to realize Response (Dimension M12) which finally leads to Purchase Intention (Dimension M10) with feeble driving power and powerful dependence and hence appears at the top of the ISM hierarchy for Mobiles.

6.5 Results and Discussions
Implementation of Interpretive Structural Modeling (ISM) technique resulted in the completion of understanding and defining interrelationships/linkages among varied advertisement effectiveness measures which were narrowed down by Delphi technique for selected products.

The development of ISM model for individual product identified the hierarchy through which advertisement effectiveness can be achieved in print media context. Dimension *viz. Attention, Relevance, Interest and Informative* appears at the base of the developed structural model while dimensions *viz. Recall, Recognition, Response and Purchase Intention* forms the top of the ISM hierarchy in case of 3 identified product categories. It is evident from the developed structural models that even common advertisement effectiveness measures have varied relative importance and interdependence in the ISM hierarchy for the selected products. It can act as a guide to practicing managers and advertising professionals to plan and execute product specific advertising campaigns strategically to achieve desired advertising goals and objectives.

6.6 Summary
The present chapter discussed the implementation of Interpretive Structural Modeling (ISM) technique to understand and develop interrelationships or linkages among identified measures of advertisement effectiveness for select product categories in context of print media. It has helped to set up lead to association among various effectiveness drivers which has several implications for academics and advertisement practitioners. The next chapter summarizes the work done and major research findings for the study along with implications of the study in Indian advertising scenario.