LIST OF FIGURES

1.1 Active and Passive Methodology ... 2

1.2 protrusion in a) counter-rotating “common flow down” b)counter-rotating “common flow up” c) co-rotating [21]... 4

1.3 Different vortex generators [1].. 5

1.4 1.4 Longitudinal vortices generated by a delta wing [8]...................... 6

2.1 The arrangement of fin, tube, and delta-winglet vortex generators [15].... 13

2.2 Flow visualization with vortex generators [39].................................... 20

3.1 A schematic of experimental setup .. 24

3.2 Photograph showing experimental setup and components................. 25

3.3a Schematic of test section (isometric view) ... 27

3.3b Schematic of test section (front view).. 27

3.3c Photograph showing test section components................................. 28

3.4 a) Smooth diffuser b) Diffuser outlet: side view c) Diffuser with protrusion.. 29

3.5 Protrusion shape with angle of attack a) α=35° b) α=60°.................. 30

3.6 Diffuser with protrusion pairs (top view) a) Parallel b) Divergent and c) Convergent.. 30

3.7 Two pair protrusion (top view)... 31

3.8 Diffuser with two pair protrusion (front view)................................. 31

3.9 Diffuser with a) one pairs VGs and b) two pairs VGs (top view)...... 32

3.10 Diffuser with VGs (front view).. 32

3.11 Diffuser with a) one pairs VGs and b) two pairs VGs (front view) 33

3.12 Diffuser with two pair VGs (top view) ... 33

4.1 Diffuser with protrusion pairs a) parallel, b) Divergent and c) Convergent.. 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Two pair protrusion (top view)</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Diffuser with two pair protrusion (front view)</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Diffuser with a) one pair VGs and b) two pair VGs</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Cross section of diffuser</td>
<td>39</td>
</tr>
<tr>
<td>4.6</td>
<td>Diffuser with one pair protrusion a) Front view and b) Top view</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Diffuser with two protrusion a) Front view and b) Top</td>
<td>45</td>
</tr>
<tr>
<td>4.8</td>
<td>Diffuser with a) One and b) Two pair VGs (Top view)</td>
<td>46</td>
</tr>
<tr>
<td>4.9</td>
<td>Diffuser with a) One and b) Two pair VGs (Front view)</td>
<td>46</td>
</tr>
<tr>
<td>6.1</td>
<td>The shape of protrusion with angle of attack a) $\alpha=35^\circ$ and b) $\alpha=60^\circ$ (front view)</td>
<td>59</td>
</tr>
<tr>
<td>6.2</td>
<td>Diffuser with one pair protrusion a) Parallel pair, b) Divergent pair and c) Convergent pair protrusion (Top view)</td>
<td>59</td>
</tr>
<tr>
<td>6.3</td>
<td>Diffuser with protrusion (front view)</td>
<td>60</td>
</tr>
<tr>
<td>6.4</td>
<td>Nu ratio at constant Re vs. Υ ($\beta=5.7^\circ$)</td>
<td>60</td>
</tr>
<tr>
<td>6.5</td>
<td>Flow pattern over protrusion [43]</td>
<td>62</td>
</tr>
<tr>
<td>6.6</td>
<td>Schematic drawing showing the increased mixing due to convergent protrusion</td>
<td>62</td>
</tr>
<tr>
<td>6.7</td>
<td>Nu ratio at constant Re vs. Υ ($\beta=7.0^\circ$)</td>
<td>63</td>
</tr>
<tr>
<td>6.8</td>
<td>Nu ratio at constant dissipation vs. Υ for $\beta=5.7^\circ$</td>
<td>66</td>
</tr>
<tr>
<td>6.9</td>
<td>Nu ratio at constant dissipation vs. Υ ($\beta=7.0^\circ$)</td>
<td>67</td>
</tr>
<tr>
<td>6.10</td>
<td>Nu ratio at constant Re vs. Υ for different β</td>
<td>67</td>
</tr>
<tr>
<td>6.11</td>
<td>Nu ratio at constant dissipation vs. Υ for different β</td>
<td>68</td>
</tr>
<tr>
<td>6.12</td>
<td>Diffuser efficiency ratio vs. Υ for $\beta=5.7^\circ$</td>
<td>69</td>
</tr>
<tr>
<td>6.13</td>
<td>Diffuser efficiency ratio vs. Υ for $\beta=7.0^\circ$</td>
<td>70</td>
</tr>
<tr>
<td>6.14</td>
<td>Diffuser efficiency ratio vs. Υ for different β</td>
<td>71</td>
</tr>
<tr>
<td>6.15</td>
<td>Diffuser loss coefficient ratio vs. Υ ($\beta=5.7^\circ$)</td>
<td>72</td>
</tr>
<tr>
<td>6.16</td>
<td>Diffuser loss coefficient ratio vs. Υ ($\beta=7.0^\circ$)</td>
<td>73</td>
</tr>
</tbody>
</table>
6.17 Stream wise variation of \(C_p \) for \(\beta = 5.70^\circ \) case .. 74
6.18 Comparison of \(C_p \) for different \(\beta \) ... 75
6.19 Diffuser with two pair protrusion (front view) ... 76
6.20 Two pair protrusion (top view) .. 76
6.21 Nu ratio at constant Re vs. \(\Upsilon \) (\(\beta = 5.7^\circ \)) ... 77
6.22 Nu ratio at constant Re vs. \(\Upsilon \) (\(\beta = 7.0^\circ \)) ... 78
6.23 Nu ratio at constant dissipation vs. \(\Upsilon \) for \(\beta = 5.7^\circ \) 80
6.24 Nu ratio at constant dissipation vs. \(\Upsilon \) for \(\beta = 7.0^\circ \) 81
6.25 Nu ratio at constant Re vs. \(\Upsilon \) for different \(\beta \) .. 81
6.26 Nu ratio at constant dissipation vs. \(\Upsilon \) for different \(\beta \) 82
6.27 Diffuser efficiency ratio vs. \(\Upsilon \) (\(\beta = 5.7^\circ \)) ... 82
6.28 Diffuser efficiency ratio vs. \(\Upsilon \) (\(\beta = 7.0^\circ \)) ... 84
6.29 Diffuser efficiency ratio for different angle of diffuser ... 85
6.30 Nu ratio (two pair to one pair) vs. \(\Upsilon \) (\(\beta = 5.7^\circ \)) 86
6.31 Nu ratio (two pair to one pair) vs. \(\Upsilon \) (\(\beta = 7.0^\circ \)) 87
6.32 Nu ratio (two pair to one pair) vs. \(\Upsilon \) (\(\beta = 5.7^\circ \)) 87
6.33 Nu ratio (two pair to one pair) vs. \(\Upsilon \) (\(\beta = 7.0^\circ \)) 88
6.34 Nu ratio at constant \(\Upsilon \) vs. Re (\(\beta = 5.7^\circ \)) .. 89
6.35 Nu ratio at constant Re vs. \(\Upsilon \) (\(\beta = 7.0^\circ \)) ... 90
6.36 Nu ratio at constant dissipation for \(\beta = 5.7^\circ \) ... 92
6.37 Nu ratio at constant dissipation vs. \(\Upsilon \) for \(\beta = 7.0^\circ \) 93
6.38 Diffuser with two pair protrusion (front view) ... 93
6.39 Two pair protrusion (top view) .. 94
6.40 Nu ratio at constant Re vs. \(\Upsilon \) (\(\beta = 5.7^\circ \)) ... 95
6.41 Nu ratio at constant Re vs. \(\Upsilon \) (\(\beta = 7.0^\circ \)) ... 96
6.42 Nu ratio at constant dissipation vs. γ for $\beta=5.7^\circ$................................. 98
6.43 Nu ratio at constant dissipation vs. γ for $\beta=7.0^\circ$ 98
6.44 Nu ratio: two pairs to one pair vs. γ ($\beta=5.7^\circ$)................................. 99
6.45 Nu ratio (two pairs to one pair) vs. γ for $\beta=7.0^\circ$................................. 100
6.46 Nu ratio (two pair to one pair) vs. γ for $\beta=5.7^\circ$................................. 100
6.47 Nu ratio (two pair to one pair) vs. γ for $\beta=7.0^\circ$................................. 101
7.1 Diffuser with a) one pair VGs and b) two pairs VG (top view)............................. 104
7.2 Diffuser with VGs (front view)... 104
7.3 Nu ratio at constant Re for one and two pair VGs ($\beta=5.7^\circ$)...................... 106
7.4 Combination of vortices... 106
7.5 Nu ratio (two pair to one pair) for $\beta=5.7^\circ$... 107
7.6 Nu ratio at constant Re for one pair and two pair VG ($\beta=7.0^\circ$).............. 108
7.7 Nu ratio (two pair to one pair) at constant Re ($\beta=7.0^\circ$)......................... 109
7.8 Nu ratio at constant Re for the different angle of diffuser............................... 111
7.9 Nu ratio at constant dissipation for $\beta=5.7^\circ$.. 112
7.10 Nu ratio (two pair to one pair) at constant dissipation ($\beta=5.7^\circ$).......... 112
7.11 Nu ratio at constant dissipation for one and two pair VGs ($\beta=7.0$)........... 113
7.12 Nu ratio (two pair to one pair) at constant dissipation ($\beta=7.0^\circ$)............ 114
7.13 Nu ratio at constant dissipation for the different angle of diffuser................. 114
7.14 Diffuser efficiency ratio for one pair and two pair VGs ($\beta=5.7^\circ$)........... 115
7.15 Diffuser efficiency ratio for one and two pair VGs ($\beta=7.0^\circ$).................. 117
7.16 Diffuser efficiency ratio for different β.. 118
7.17 Diffuser loss coefficient ratio for one and two pair VGs ($\beta=5.7^\circ$)........... 119
7.18 Diffuser loss coefficient ratio for one and two pair VGs ($\beta=7.0^\circ$)........... 119
7.19 Comparison variation of Cp for one and two pair VGs................................. 120
7.20 Variation of C_p for one pair VGs at Re=3.5E5
7.21 Variation of C_p for the different β
7.22 a) Diffuser with one pair and VGs b) Diffuser with two pairs VGs (top view)
7.23 Diffuser with VGs (side view)
7.24 Nu ratio at constant Re for one pair and two pair VGs ($\beta=5.7^\circ$)
7.25 Nu ratio (two pair to one pair) at constant Re for $\beta=5.7^\circ$
7.26 Nu ratio at constant Re for one pair and two pair VGs ($\beta=7.0^\circ$)
7.27 Nu ratio (two pair to one pair) at constant Re for $\beta=7.0^\circ$
7.28 Nu ratio vs. α for different β
7.29 Nu ratio at constant dissipation for one and two pair VGs $\beta=5.7^\circ$
7.30 Nu ratio (two pair to one pair) at constant Re for $\beta=5.7^\circ$
7.31 Nu ratio at constant dissipation for one and two pair VGs $\beta=7.0^\circ$
7.32 Nu ratio (two pair to one pair) at constant Re for $\beta=7.0^\circ$
7.33 Nu ratio at constant dissipation for the different angle of diffuser
7.34 7.34 Diffuser with a) one pair VGs and b) two pairs VGs (front view)
7.35 Diffuser with VGs (top view)
7.36 Nu ratio at constant Re vs. α ($\beta=5.7^\circ$)
7.37 Nu ratio (two pair to one pair) at constant Re vs. α for $\beta=5.7^\circ$
7.38 Nu ratio (two pair to one pair) at constant Re vs. α ($\beta=7.0^\circ$)
7.39 Nu ratio (two pair to one pair) at constant Re for $\beta=7.0^\circ$
7.40 Nu ratio vs. α (at constant Re) for different β
7.41 Nu ratio at constant dissipation for one and two pair VGs $\beta=5.7^\circ$
7.42 Nu ratio at constant dissipation for one and two pair VGs for $\beta=7.0^\circ$
7.43 Nu ratio vs. α at constant dissipation for different β
8.1 Variation of Nu with β (Re=3.1E5)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Variation of Nu ratio with β (Re=3.1E5)</td>
<td>142</td>
</tr>
<tr>
<td>8.3</td>
<td>Variation of Nu with β (Re=3.1E5)</td>
<td>142</td>
</tr>
<tr>
<td>8.4</td>
<td>Variation of Nu ratio with β (Re=3.1E5)</td>
<td>143</td>
</tr>
</tbody>
</table>