ACKNOWLEDGEMENTS

To put an effort like this requires the determination and help of many people around me and I would not be doing justice to their efforts by not mentioning each helping hand in person.

I take this opportunity to express with pleasure my profound gratitude and grateful indebtedness to my guide, Dr. R.R Kulkarni and Dr. S. Pavitran, for their immense interest and constant guidance throughout the course of the research programme. I consider myself fortunate to have been worked under them supervision. I owe a great deal to them for the knowledge I have gained over these years, which is going to be very useful in building my career.

I am deeply indebted to Dr. M. K. Nalawade, who extended his helping hand at all the critical stages of this research work. I am very fortunate to have an association with such a visionary person, which made my Ph.D. work an enriching learning experience.

I feel privileged to acknowledge with deep sense of gratitude towards Dr. M. K. Nalawade for his valuable suggestion throughout my course of studies and help rendered to me for the completion of the work.

I am also grateful to Dr. S. V. Joshi, Dr. K. Sundaram, Dr. A. Barai, Dr. A. Marathe and Dr. M. B. Choudhary for their suggestions during my progress seminars, which have helped me to a great extent in streamlining my research programme.

I would like to give sincere thanks to Dr. J. P. Shete and Mr. S. K. Modgi for providing valuable assistance during this research work.

I express my heartfelt gratitude to management and Dr. R. M. Jalanekar, Director, Vishwakarma Institute of Technology, Pune for their moral support. I also express my heartfelt gratitude to Prof. H. G. Phakatkar, Head of department.

I would like to thank all the staff members of Mechanical Engineering Department.

Last but not the least I would like to thank my family members and my friends especially Mr Farhang Pashootan and his family. It would have not been possible to complete the report without their moral support, valuable comments and suggestions which motivated me towards work.

Ghobad Shafiei Sabet
Abstract

The experimental investigation of the influence of one and two pair protrusions and vortex generators in a diffuser is carried out. Convergent, parallel and divergent cases of protrusion pair are looked into. The protrusion pairs with two angles of attack $\alpha = 35^\circ$ and $\alpha = 60^\circ$ are employed. The angle of attack of vortex generators (α) varies from 19° to 43°. Two diffusers with half angle of 5.7° and 7.0° are considered. For making the diffuser surface rough, one and two pair protrusions are placed near the inlet section, on the bottom or top side, while the heat flux is applied on the top one. In the next case, the one and two pair vortex generators are glued near the inlet section, on the bottom or top or vertical side walls and their effect is looked into. The Reynolds number based on the diffuser length is in the range $2.3\times10^5 - 3.6\times10^5$. The effect of protrusions and vortex generators on the heat transfer coefficient, diffuser efficiency, pressure loss coefficient and pressure coefficient is investigated. The static pressure is measured along the diffuser length. The stagnation pressure and temperature are measured at the outlet cross-section. The numerical integration of these yields the average velocity (mass flow rate) and the outlet bulk temperature. A known heat flux is given as input and the temperature is measured on selected points at the heated wall. The results are presented as the ratio of Nusselt number (rough case to the smooth one). It is seen that the convergent case yields the highest heat transfer enhancement, followed by the divergent case and then the parallel one at both unheated and heated side, for the protrusions. The enhancement is presented at the same Reynolds number, as well as at constant dissipation (pumping power). For one pair protrusion, the maximum enhancement occurs when the convergent angle is 35° (for both cases, top and opposite sides). The maximum enhancement is around 20% at the same Reynolds number and 14% at constant dissipation for the opposite side roughened by one pair protrusion. The corresponding values for the top side are 53% and 47% respectively. The enhancement decreases with the diffuser angle.

The two pair protrusions yield a higher enhancement. Similarly, the top side case enhancements are higher than the opposite side cases. The enhancement decreases with the diffuser angle, due to the effect of adverse pressure gradient. The enhancement decreases with Re and this is also seen from the correlations. For the opposite side case,
the maximum enhancement with one pair is 20% at constant Re and 15% at constant dissipation. With two pairs, the corresponding values are 45 and 39%.

Similar to protrusions, vortex generators too exhibit significant heat transfer enhancement even when the opposite (unheated) side is roughened. As with protrusions, the two pair yields a higher enhancement. The same is with top side cases.

When the opposite (unheated) side is roughened, the maximum enhancement at constant Re is 50% with one pair and 66% with two pairs. At constant dissipation, the corresponding values are 32% and 40%. For the case where the top (heated) side is roughened, the enhancement values at constant Re are 77% (one pair) and 98% (two pairs). The corresponding values at constant dissipation are 58% and 70%.

The heat transfer enhancement is lower at the higher diffuser angle, due to the higher adverse pressure gradient.