Chapter 7

Challenges before Indian television
Chapter 7

Challenges before Indian television

"Things are getting smaller and smaller... we are looking at shooting footage on a mobile phone. Recently, we used a Nokia mobile phone and went "live" on CNN. You don't have to book satellite space. You can just dial into the CNN offices in Hong Kong or Atlanta, and stream news live, so technology is getting smaller and mobile."

In future, mostly a very little manpower would be used for the Coverage and production and the presentation of the news casts.

Maybe there would be a very little scope for the well planned and well written script for such coverage and instead of that, the live conversation between the news caster in the studio and the correspondent on the location, his live interviews of the concerned and relevant personalities would be utilized between the story. Every cut sent by him or given live to the studios, could be repeated hundred times as per the gravity, importance and the requirement of the editorial staff in different formats.

"Changing face of news is triggered by the changing face of India, be it demographic or technological. News channels are delivering what viewers want, be it the ‘Prince’ episode, or the much talked about crime shows"

G Krishnan, Executive director and CEO, TV Today Network

In any news story, story telling is most important, and the best editing done by the same story teller, could be the most effective and making maximum impact on to the viewers. The delivery of the content is expected to be reliable, effective, fast and depending upon the lower cost overheads.
7.1 News Making in the HD Age

The following is the imaginary picture and line of action, in the age of the High Definition News Making.

1. The Input or Assignment Editor will come to know the breaking News, who will enter it into the NRCS (News room Computer System), and create a Place ID on the server, to receive the edited video in future.

2. NRCS will be searched by the reporters, who will get the breaking story line and hint. He will search for the wires, previous story scripts; he will search for them on NRCS itself, will take his coverage crew along with the camera person and will go to the location for shoot.

3. The cameraman will shoot the visual in the format of HD, framing the content to fit within the 4:3 center of the full 16:9 picture.

4. The cameraman, while shooting himself will mark the best and great shots of the coverage.

5. After finishing the overall shoot, and on the way back to the news centre, the reporter will go through all the marked coverage and best shots according to the cameraman, and he himself. He will finalize the in marks and out marks of the selected shots, and practically will make the rough cut.

6. After reaching the news station, reporter will write the story.

7. Meanwhile, on the non linear editing table, the editor will locate the assigned story; click the story, which will open a new linked bin and time line. The camera media will be mounted, which will display the low resolution proxies of the selected dots. These shots would be dragged in to the story Bin. On the back ground the full resolution HD from the camera would be pulled in from the camera unit.
8. The content searched from the earlier stories related to the same subject would be brought to the bin. Additional SD content would also be brought from the archives to the bin. The finally edited version would be saved as HD into the place holder ID created by the assignment editor.

9. The ID arriving on the server would indicate the director and producer of the news that the story is ready to air.

10. The clip will play through the switcher and into the HD feed. The switch will also create a stream and onscreen graphics would be fed into SD and HD. This will give the most effective, best looking and competitive News package.

Most of the American TV Companies have already started using this procedure of news making. The Broadcasters in India would neither be in a position to avoid the temptation to follow this some day or other, nor be able to afford to lag behind in the technology driven race.

7.2 Main challenges, before the Indian Television Industry

“As content production becomes easier, information transfer speeds up and storage capacities grow exponentially, a true inflation of information will occur, leading to an increasing need to assess, select and authenticate media input. New tools for extracting relevant, validated and legal information will be available to filter a variety of information channels and sources,”

Christine Daun, Dietmar Dengler, Peter Fettke

The above media Scientists identified a set of major trends in future information technology in the media industry on global level, which is as follows:
Set of major trends on global level

- Ubiquitous computing in a broadband world
- Consumers becoming collaborative producers
- Triple play and beyond
- The digitally enriched reality
- Towards user-centric computing
- Spread of the service-oriented-paradigm
- More news with less value
- Spotlighting information islands
- From rigid media to entertainment services.

“Four buzzwords are ruling the newsrooms in Indian Television today: Cricket, Crime, Cinema and Crisis.”

Pankaj Pachauri, Senior Editor, NDTV

The traditional news outlets cannot hope to dismiss these trends; they must start thinking of strategies to cope with this monumental change.

Following are the major developments and challenges before Indian Electronic media in near future.

7.2.1 CAS (Conditional Access System)

The introduction of CAS (Conditional Access System) effective January 1, 2007 was one of the most significant developments of the Indian Television Industry. It was launched in select areas in 3 metro cities in India: Delhi, Mumbai, and Kolkata. Chennai had CAS prior to this.

Table: 7.1 CAS Homes

<table>
<thead>
<tr>
<th>Area</th>
<th>STB Opted Until 15 Feb'07</th>
<th>C&S homes in CAS area</th>
<th>Rate of adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delhi</td>
<td>189622</td>
<td>680000</td>
<td>28%</td>
</tr>
<tr>
<td>Mumbai</td>
<td>226543</td>
<td>550000</td>
<td>41%</td>
</tr>
<tr>
<td>Kolkata</td>
<td>49620</td>
<td>410000</td>
<td>12%</td>
</tr>
<tr>
<td>Total</td>
<td>465785</td>
<td>1630000</td>
<td>29%</td>
</tr>
</tbody>
</table>
• Of the 7.96 million cable homes across the three metros, 1.63 million cable homes fall under the CAS mandated zones. **Mumbai**: 17%, **Delhi** 26%, and **Kolkata** 20%.

• Mumbai was the most responsive city with 25% homes CAS converted homes and 20% of the homes were awaiting installation.

• In an aggregate level, Delhi and Kolkata response rates were leveled, however Delhi was better served (14%) than Kolkata (10%)

• At a 3 metro level, nearly 1/3 rd of the mandated area consumers responded favorably for CAS to pay channels.

• Highly debated issue related to CAS was the imposition of a price cap of Rs 5 per channel per month by the regulator TRAI. The same price was imposed for all channels. No such price caps were imposed on DTH services

• The revenue sharing between the broadcaster, MSO, and local cable operators (LCO) was in the ratio of 45:30:25. But the revenue collected from the free to air homes would not be required to be shared by the LCO with the broadcaster. This was not been finalized until April 2007.

• TRAI has stated that CAS would be implemented soon in other cities of the country but after a careful study.

7.2.2 DTH (Direct To Home Television)

DTH is an encrypted transmission that travels to the consumer directly through a satellite. DTH transmission is received directly by the consumer at his end through a small dish antenna. The encrypted transmission is decoded by a Set-Top-Box (STB) unlike regular cable connection.

DTH too is nothing but a form of Conditional access system, the only difference is that CAS as we commonly know is
still delivered through ground infrastructure and DTH travels through satellite. Both the services have co-existed world over and grown. CAS is the basic form of addressability where as DTH is as ‘flexible’ as it can get because one is not connected to the ground infrastructure.

The basic components of a DTH service are a STB and a dish antenna. Where an entry level DTH STB will cost in the region of Rs 3500 (including taxes and installation cost at consumers end) a high end STB with value added features like PVR (Personal Video Recorder), PSTN connectivity,

Gamming console, channel management system, etc. will be in the region of Rs 7000. One may be able to see most of the channels and also a lot of niche channels. The bottom-line is DTH is a neutral distribution platform for all. For multiple connections in the same premises can use the same connection but every TV set will need to have an individual STB.

One can simultaneously go for DTH and CAS-enabled cable system. CAS and DTH are independent distribution platforms. One comes to you through ground network and the other through Satellite.

DTH is a National service and the STBs enable a viewer to change service providers without changing the STB.DTH transmission happens on high power Ku Band signals and the quality and strength of transmission is much stronger than the transmission that one receives these days. There could be some effect in exceptionally stormy weather. A High End DTH box will support features like PSTN connectivity, Gaming, Personal Video Recorder etc.

- In 2006, second private DTH player TATA Sky launched its services, after Zee Launched Dish in 2003. The real impact of DTH was felt when CAS was introduced, and in December
2006, heavy advertising and marketing by both the DTH players started and MSO’s offered digital cable under CAS.

- TRAI brought the legislation of Interconnection, which mandated that all channels must be provided by all the players on all platforms at comparable market rates. However, in absence of the second DTH player, Zee could not offer the competitive channels to its customers as part of their bouquet of channels.

The ministry of Information and Broadcasting also issued a letter of intent to Anil Ambani’s DTH service Blue Sky Magic, in 2006. Sun TV, the other player in waiting, postponed its plane to launch due to a satellite failure, and allocation of frequency for DTH was delayed.

7.2.3 VOD (Video On Demand)

VOD stands for Video on Demand. VOD permits a customer to browse an online movie catalogue, to watch trailers and to select the movie he wants to watch. The play out of the selected movie starts nearly instantaneously on the customer's TV or PC.

Technically, when the customer selects the movie, a point-to-point unicast connection is set up between the customer's decoder (Set Top Box or PC) and the delivering streaming server. The signaling for the trick play functionality (pause, slow-motion, wind/rewind etc.) is assured by RTSP (Real Time Streaming Protocol).

The most common codes used for VOD are MPEG-2, MPEG-4 and VC-1. In order to avoid content piracy, the VOD content (the movies) is generally encrypted.
7.2.4 HDTV (High Definition TV)

High-definition television (HDTV) is a television broadcasting system with a significantly higher resolution than traditional formats (NTSC, SECAM, and PAL) allow. Except for the early analogue formats in Europe and Japan, HDTV is broadcast digitally, and therefore its introduction sometimes coincides with the introduction of digital television (DTV): this technology was first introduced in the USA during the 1990s, by the Digital HDTV Grand Alliance (grouping together AT&T, General Instrument, MIT, Philips, Sarnoff, Thomson, and Zenith).

While a number of high-definition television standards have been proposed or implemented on a limited basis, the current HDTV standards are defined in ITU-R BT.709 as 1080 active interlaced or progressive lines, or 720 progressive lines, using a 6:9 aspect ratio. The term "high-definition" can refer to the resolution specifications themselves, or more loosely to media capable of similar sharpness, such as photographic film. Currently 11% of American households have HDTV's.

Advantages of HDTV

High-definition television (HDTV) offers a much better picture quality as compared to the standard television. HD's greater clarity means the picture on screen is less blurred and less fuzzy. HD also brings other benefits - smoother motion, richer and more natural colors surrounding sound and the chance for different equipment to work with.

All commercial HD is digital, so the signal will either deliver an excellent picture, a picture with noticeable pixilation, a series of still pictures, or no picture at all. The system cannot produce a snowy or washed out image from a weak signal, effects from signal interference, such as herringbone patterns, or vertical rolling. This is also a disadvantage, because any interference will
render the signal unwatchable. As opposed to a lower-quality signal one gets from interference in an analogue television broadcast, interference in a digital television broadcast will freeze, skip, or display garbage information.

HD programming and films will be presented in 16:9 widescreen format (although films created in even wider ratios will still display "letterbox" bars on the top and bottom of even 16:9 sets.) The older films and programming that retain their 4:3 ratio display will be presented in a version of letterbox commonly called "pillar box", displaying bars on the right and left of 16:9 sets (rendering the term "full screen" a misnomer). While this is an advantage when it comes to playing 16:9 movies, it creates the same disadvantage when playing 4:3 television shows that standard televisions have playing 16:9 movies. A way to address this is to zoom the 4:3 images to fill the screen or refame it material to 14:9 aspect ratios either during preproduction or manually in the TV set.

The colors will generally look more realistic, due to their greater bandwidth. The visual information is about 2-5 times more detailed overall. The gaps between scanning lines are smaller or invisible. Legacy TV content that was shot and preserved on 35 mm film can now be viewed at nearly the same resolution as that at which it was originally photographed. A good analogy for television quality is looking through a window. HDTV offers a degree of clarity that is much closer to this.

Two new pre-recorded disc formats support HDTV resolutions, namely **HD DVD** (supporting 720p, 1080i and 1080p) and **Blue-ray** (supporting up to 1080p). Most players for both systems are backward-compatible with DVDs. However, the two formats are not compatible with each other. The increased clarity
and detail make larger screen sizes more comfortable and pleasing to watch.

7.2.5 Dolby Digital

Dolby Digital 5.1 sounds are broadcast along with standard HDTV video signals, allowing full surrounding sound capabilities. (Standard broadcast television signals usually include stereo audio.) Both designs make more efficient use of electricity than SDTV operating costs.

7.2.6 IPTV (Internet Protocol Television)

MTNL launched the first IPTV services in Mumbai and Delhi in 2006. Though the current base of IPTV subscribers is extremely low, phenomenal growth is expected in near future. Amongst the various challenges that IPTV service providers face is that of whether the services fall under the ambit of telecom services or television services. TRAI has sought certain clarifications from Department of Telecom, on which, the MTNL is allowed to launch the IPTV services, under the cable Television Network Regulation Act. The act does not have the unified access service license under which a company is allowed to offer triple Play Services.

IPTV (Internet Protocol Television) describes a system where a digital television service is delivered using the Internet Protocol over a network infrastructure, which may include delivery by a broadband connection. For residential users, IPTV is often provided in conjunction with Video on Demand and may be bundled with Internet services such as Web access and VOIP. The commercial bundling of IPTV, VOIP and Internet access is referred to as a Triple Play. Adding the mobile voice service leads to the Quadruple Play denomination. IPTV is typically supplied by a broadband operator using a closed network infrastructure. This closed network approach is in competition with the delivery of TV
content over the public Internet. This type of delivery is widely called TV over Internet or Internet Television. In businesses, IPTV may be used to deliver television content over corporate LANs and business networks. Perhaps a simpler definition of IPTV would be television content that, instead of being delivered through traditional formats and cabling, it is received by the viewer through the technologies used for computer networks.

In 1994, ABC's World News Now was the first television show to be broadcast over the Internet, using the CU - See Me videoconferencing software.

Internet radio company AudioNet started the first continuous live web casts with content from WFAA-TV in January, 1998 and KCTU-LP on January 10, 1998. In the past, this technology has been restricted by low broadband penetration. In the coming years, however, residential IPTV is expected to grow at a brisk pace as broadband is now available to more than 100 million households worldwide. Many of the world's major telecommunications providers are exploring IPTV as a new revenue opportunity from their existing markets and as a defensive measure against encroachment from more conventional Cable Television services. In the mean time, there are thousands of IPTV installations within schools, corporations, and other institutions that do not require the use of wide area connectivity.

Because IPTV uses standard networking protocols, it offers lower costs for operators and lower prices for users. With the Usage of the set-top boxes with Broadband Internet connections, video can be streamed to households more efficiently than current coaxial cable. To bring higher speeds and to allow multiple High Definition TV channels, ISPs are being upgrading their networks
7.1 Impact of Direct to Home

7.2 Conditional Access and Video on Demand
7.3 Wrist Television

7.4 Future digital conversions - 3G video phones
In June 2006, Market News First MN1.com went live in Dallas in an HDTV format for free, covering the financial markets. Local IPTV, as used by businesses for Audio Visual AV distribution on their company networks is typically based on a mixture of: a) Conventional TV reception equipment and IPTV encoders b) IPTV Gateways that take broadcast MPEG channels and IP wrap them to create multicast streams.

IPTV uses a two-way digital broadcast signal (sent through a switched telephone or cable network by way of a broadband connection and a set-top box programmed with software (much like a cable or DSS box) that can handle viewer requests to access to many available media sources.

Protocols

IPTV covers both live TV (multicasting) as well as stored video (Video on Demand VOD). The playback of IPTV requires either a personal computer or a "set-top box" connected to a TV. Video content is typically compressed using either a MPEG2 or a MPEG4 codec and then sent in an MPEG2 Transport stream delivered via IP Multicast in case of live TV or via IP Unicast in the case of Video on Demand. IP Multicast is a method in which information can be sent to multiple computers at the same time. The newly released MPEG4 codec is increasingly used to replace the older MPEG2 codec.

In standards-based IPTV systems, the primary underlying protocols used for: Live TV is IGMP version 2 for connecting to a multicast stream (TV channel) and for changing from one multicast stream to another (TV channel change).

Currently, the only alternatives to IPTV are traditional TV distribution technologies such as terrestrial, satellite and cable. However, cable can be upgraded to two-way capability and can thus also carry IPTV.
Interactivity

An IP-based platform also allows significant opportunities to make the TV viewing experience more interactive and personalized. The supplier can include an interactive program guide for viewers to search for content by title or actor’s name. Picture-in-picture function will allow them to “channel surf” without leaving the program they’re watching. Viewers will be able to look up a player’s stats while watching a sports game, or control the camera angle. They also can have access to photos or music from their PC on their television, or even use a wireless phone to schedule a recording of their favorite show, or adjust parental controls so that their child can watch a documentary for a school report, while they’re away from home.

Better compression

IPTV uses a more efficient compression standard than Free-To-Air digital television, resulting in lower bit rates for streams, but higher compression may result in lower quality TV pictures in some instances. The standard size to compress video to IPTV is 320 X 240. The frame rate should range from 15 to 24 frames per second.

7.2.7 Triple Play

Traditionally, TV has come down one wire cable TV or a terrestrial antenna, the telephone has been used another (the "Plain Old Telephone System"), and the Internet has been available on either. Both cable operators and Telco operators are starting to offer all three on one wire, which is more cost effective. Triple play is an expression used by service operators describing a bundle of telephony, data and video via a single connection.

Triple play does not require that the phone and TV use the Internet Protocol (Voice over IP & IPTV respectively) - many still offer phone in an analogue form. However, TV services over
telephone connections almost always use a form of IPTV, which is more compatible with DSL technologies.

Quad play refers to the triple play package AND mobile telephony — though this is a package of products rather than sharing a single data connection into the home.

7.2.8 IPTV based Converged Services

Another advantage of an IP-based network is the opportunity for integration and convergence. Converged services imply interaction of existing services in a seamless manner to create new value added services. One good example is On-Screen Caller ID, getting Caller ID on your TV and the ability to handle it (send it to voice mail, etc). IP-based services will help to enable efforts to provide consumers anytime-anywhere access to.

Within businesses and institutions, IPTV eliminates the need to run a parallel infrastructure to deliver live and stored video services.

Limitations

Because IPTV is based on the Internet Protocol, it is sensitive to packet loss and delays if the IPTV connection is not fast enough. Currently, most IPTV systems do not have support for HDTV, unlike some other digital television systems such as DVB.

7.2.9 NPVR (Network Based Private Video Recorder)

Network Personal Video Recording is a consumer service where real-time broadcast television is captured in the network on a server allowing the end user to access the recorded programs on the schedule of their choice, rather than being tied up to the broadcast schedule. The NPVR system provides ultimate time-shifted viewing of broadcast programs, allowing subscribers to record and watch programs at their convenience, without the added expense and maintenance needed for a hard drive-
equipped set-top box. It’s like having a PVR built into the network. In this way, services usually provided by popular consumer electronics hardware can be offered as network services. Subscribers can watch what they want, when they want, without needing yet another device or remote control.

7.3 Mobile Phones: Faster Tool for the Multimedia

In future, the most powerful tool and at the same time weapon will be the Mobile phones. All the services are going to be available to the customer on the phone itself. Content, pictures, as well as the phone contact will be done on it. At the same time the access to the satellite for Global Positioning- (GPRS) and even to the E mails and Internet will be easier. The Information and the entertainment through the video on demand, games for full and even interactive television channels would provoke the viewer to participate in many live as well as the Reality shows. Because of this revolutionary change, the Advertising media will be practically investing huge amount in this multimedia, considering the huge number of viewers and users of the mobile phones. The viewers and users would not need to go to the personal computers for any purpose, as all the functions would be done on any spot locations from where they are. The access as well as participatory element would make the mobile devise effective tool rather than any other instrument.

7.4 New Television Channels

Even though there are lots of channels in the market, several new channels were launched in 2006, and some more were announced for launching in the year 2007. NDTV announced its plan to launch a general entertainment channels with the film personality Karan Johar, UTV announced to launch a special channels to attract specially YOUTH viewers, named BINDASS.
• Zee Network had launched the first twenty four hour Marathi News Channels “Chovis Taas” on February 12, 2007.
• Zee also launched first 24 hours Marathi Feature Films Channel: Zee Talkies on August 25, 2007.
• Star Group started 24 hour Marathi News Channel Star Maza,
• IBN Lokmat will be starting 24 Hr Marathi News Channels in the First Quarter of 2008.
• Sakal Group of news Papers will be launching Hindi and Marathi Multilingual Infotainment Channels in 2008.

Zee Chovis Taas, 24 hour Marathi News Channel has some advantages as seen below:
• It had ready infrastructure, experienced manpower and equipment
• It had a sister concern, which owns an earth station, and helps for the transmission
• Zee group had 18 channels in their family bouquet, and the content as well as visual were never a problem for them
• Being the pioneer in Indian television, this group had always a step ahead in technological advancement.
• Zee News in Marathi Entertainment had already started hourly Newscasts in 2002.

The above reasons made the difference between other regional Marathi channels and Zee Chovis Taas. After the launch of this channel, The Zee Marathi channel was completely converted into entertainment Channel. The news part was removed and shifted completely to Chovis Taas. The star Group was already been planning to launch the 24 hour Marathi News Channel from 2005.
It had some different characteristics as you can see below:

- Star Maza had picked up the name to give a feel of self belonging, but a brand name that was already in market for a drink.
- Star also had the strong back up of content & visuals like zee.
- The main problem of star group was that, when its contract with NDTV was over and NDTV started its own channels, and it took away the visual library with it, because the copyright was with NDTV and not with Star.
- Star had to reconstruct and reorganize the visual and content archives again which took a lot of time and needed a lot of effort.
- “Star Maza” had picked up fresh faces instead of experienced Journalists on the field, and decide to groom them. They organized the in-house training for newly recruited fresh reporters.
- Some of the new recruits were from theatre and did not have any back ground of Television.
- The graphic presentation and the look of this channels lacked freshness and had some glossy touch. The new faces could not give a finished face to the newly launched channel.

In comparison, the Zee Chovis Taas had good material with editorial focus, but ETV had good visuals, and less editorial processing. Being a new team, Star Maza had an average Packaging, by very average look, and fair editorial focus as well as process.

In this situation, overall, DD Marathi maintained its viewership, focus, credibility, but could not improve technical production, post production, presentation and look of the channel.
It remained same for the years, as there were no firm changes to improve.

7.5 Audience Measurement

TAM, India’s leading advertising measurement Company increased its panel meters from January 1, 2007 from 4500 to 7000, and it now covers 145 cities instead of 73. TAM has also updated the number of cable and satellite homes to 68 millions from the 41 million which was used as the base to analyze viewer ship data.

Still the question remains unanswered: How can any agency take a review through such a small sample size from just 145 cities out of 28000 cities and villages, and claims to be most authentic parameter?

How this figure is justified in terms of the proper representation from a vast country, having so many languages and diversities of languages, castes, religions and cultures?

The questions are still unanswered. The millions of rupees business is done on the same figures given by TAM, considering that these are truly indicators of the masses in the country, and shockingly measures on just 6000 meters at homes of the viewers in this country. More than 75 % of the meters have been located in urban areas. Practically most of the Indian TV Viewers is located in rural areas.
Table: 7.2 Advertising duration in 2006

<table>
<thead>
<tr>
<th>Type</th>
<th>% Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Entertainment</td>
<td>24</td>
</tr>
<tr>
<td>Music</td>
<td>16</td>
</tr>
<tr>
<td>Hindi News</td>
<td>13</td>
</tr>
<tr>
<td>Movie</td>
<td>10</td>
</tr>
<tr>
<td>Hindi Entertainment</td>
<td>10</td>
</tr>
<tr>
<td>Business</td>
<td>05</td>
</tr>
<tr>
<td>English News</td>
<td>05</td>
</tr>
<tr>
<td>Kids</td>
<td>05</td>
</tr>
<tr>
<td>Others</td>
<td>05</td>
</tr>
</tbody>
</table>

(Others include Regional news, English Entertainment, Religious Channels, Sports Channels etc)

7.6 Growth of News Television

The main reason for increase in the number News Channels in the last 13 Years (from 2 to 38) is the launch costs have been lowered.

- In December 2000, AAJ TAK, a twenty four Hour News channel was launched at the cost of Rs. 40 Crore. In 2006, the costing came down to Rs. 3 crore to launch a small news Channel.
- Bandwidth Costs on satellites for Regional beam have dropped from Rs. 2 Lack to Rs. 95,000 per month per Mhz.
- Bandwidth cost for wide beam also dropped from Rs. 3 lack per month to Rs 2 Lack 20 thousand per Mhz per month.

7.7 Digitalization of cable television

TRAI gave some recommendations regarding digitalization of cable television in India in 2004, and suggested that there should be a national plan for digitalization from April 1, 2006 till March 31, 2010. This included providing digital cable services in top 35 cities in India, with the population exceeding 1 million by 2010. Though roll out of CAS to other areas could bring about the
said digitalization, the cable industry expects government to take more holistic and practical approach on this.

7.8 Sharing of Infrastructure

The big News channels are coming together to discuss the possibility of utilizing the infrastructure and the electronic equipment on common basis. The need for this common utilization was felt badly, because of the same work done by all the crews covering the same happenings and incidents. On the lines of Press Trust of India, the leading news channels are planning to form a common agency, which could provide the services of the visuals on professional basis to any channels as and when required. On the same lines the feeding facilities like OB vans or satellite can also be shared, to avoid the duplication and excess expenditure on separate units for the coverage or feeding. This could be done only in the general coverage and certainly not in the Exclusive coverage.

References

1. Industry Sources

2. Report by IFRA News Paper and DFKI – German Research Centre for Artificial Intelligence, Saarbrücken, Germany

4. Interview of D. Ray (Chief Engineer, Doordarshan, New Delhi) by researcher

5. IRS Survey- 2006

6. An interview to www.indiantelevision.com

7. An Interview to India Today, December 2006

10. Interview of D. Ray (Chief Engineer, Doordarshan, New Delhi) by researcher