CONTENTS

Preface i

CHAPTER 1 – INTRODUCTION 1

1.1 Polymer 2

1.2 Classification of polymers 2

1.2.1 Geometrical structure based classification of polymers 2

1.2.2 Classification of polymers based on chain structure 3

1.3 Biopolymers 4

1.3.1 Cellulose and cellulose derivatives (cellulosics) 6

1.3.2 Hydroxypropyl methylcellulose (HPMC) 7

1.4 Solid polymer electrolyte 9

1.4.1 Ionic conductivity of polymer electrolytes 9

1.4.1.1 General description of ionic conductivity 9

1.4.1.2 Basic requirements to generate the ionic conductivity 11

1.4.1.3 Aspects to govern the ionic conductivity 11

1.4.1.4 Effects of inorganic salt concentration on ionic conductivity in polymer electrolytes 12

1.4.1.5 Effect of temperature towards the ionic conductivity 13

1.4.1.6 Effects of ionizing radiations towards the ionic conductivity of polymer electrolytes 13

1.5 Interaction of radiation with matter 14

1.5.1 Ionizing radiation 14

1.5.2 Dose and units 15

1.5.3 Ion-sold interaction 15

1.5.4 Range of ions in solids 17

1.6 Gamma ray interaction with matter 17

1.7 Radiation effects on polymers 21

1.7.1 Cross linking 21

1.7.2 Radiation grafting 22

1.7.3 Impact on macroscopic properties 22

1.7.4 Degradation 22

1.7.5 Gamma radiation induced conductivity in polymer electrolytes 23

1.8 Radiation effects on cellulose and cellulose derivatives 23
CHAPTER – 2 – LITERATURE REVIEW

2.1 Introduction 26
2.2 The development of solid polymer electrolyte 27
2.3 Cellulose as polymer electrolytes 29
2.4 Gamma irradiation effects on polymers 32
2.5 Importance and scope of the present study 35
2.6 Aim and objectives of the present study 38

CHAPTER – 3 RESEARCH METHODOLOGY 39

3.1 Outline 40
3.2 Materials 40
3.2.1 Hydroxypropyl methylcellulose (HPMC) 40
3.2.2 Sodium iodide (NaI) 42
3.2.3 Cadmium chloride (CdCl₂) 44
3.2.4 Ceric ammonium nitrate (CAN) 46
3.3 Preparation of Samples 48
3.3.1 Solution-Cast Technique 48
3.4 Gamma irradiation 50
3.5 Characterizations 50
3.5.1 X-ray diffraction (XRD) 51
3.5.2 Scanning electron microscope (SEM) 55
3.5.3 Fourier transform infrared spectroscopy (FTIR) 58
3.5.4 Differential scanning calorimetry (DSC) 60
3.5.5 DC electrical conductivity measurements 63

CHAPTER 4 – RESULTS AND DISCUSSION 66

4.1 X-Ray Diffraction (XRD) studies 67
4.1.1 Pure HPMC sample 68
4.1.2 HPMC:NaI systems 70
4.1.3 HPMC:CdCl₂ systems 74
4.1.4 HPMC:CAN systems 77
4.1.5 Summary of XRD characterization 80
4.2 Scanning Electron Microscopy (SEM) studies

4.2.1 Pure HPMC samples

4.2.2 HPMC:NaI systems

4.2.3 HPMC:CdCl₂ systems

4.2.4 HPMC:CAN systems

4.2.5 Summary of SEM characterization

4.3 Fourier Transform Infrared (FTIR) studies

4.3.1 Pure HPMC samples

4.3.2 HPMC:NaI systems

4.3.3 HPMC:CdCl₂ systems

4.3.4 HPMC:CAN systems

4.3.5 Summary of FTIR spectroscopy

4.4 Differential Scanning Calorimetry (DSC) Studies

4.4.1 Pure HPMC samples

4.4.2 HPMC:NaI systems

4.4.3 HPMC:CdCl₂ systems

4.4.4 HPMC:CAN systems

4.4.5 Summary of DSC Characterization

4.5 Electrical Conductivity Studies

4.5.1 HPMC:NaI systems

4.5.2 HPMC:CdCl₂ systems

4.5.3 HPMC:CAN systems

4.5.4 Summary of Four Systems on Electrical Conductivity Study at 313K

CHAPTER 5 – CONCLUSION AND FUTURE SCOPE OF THE WORK

5.1. Conclusion

5.2. Scope for future work

List of References

Papers published